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Abstract–A necessary first step in the allocation of resources to increase homeland security is an evaluation of the risk of 

terrorist attack. In this paper we demonstrate the use of Logic Evolved Decision analysis (LED) to the estimation of the risk 
of nuclear terrorism. LED uses linked logic models to represent the elements of the decision process. These logic models are 

built using the software tool LED TREE. The first model, the possibility tree is used to deduce a set of attack scenarios. The 
second model, the inference tree represents the evaluation model used to infer risk for the individual attack scenarios. The 

model proposed here is based on a game theoretic perspective where the set of attackers and the defender play an extensive 
game with imperfect information. We perform the risk evaluation using approximate reasoning (AR). AR uses a series of 

forward-chained rule bases to emulate expert judgment. It is particularly well suited to decision problems where much of the 
data is qualitative and many of the relevant factors and their importance are perceptual in nature. Results for an illustrative 

problem with a small set of attack scenarios are presented. 
 
 
I. INTRODUCTION 

Following the events of September 11, 2001, there 
has been a quantum change in the level of attention 
directed toward defending the homeland against terrorist 
attack.  The scope of current U. S. counter-terrorism 
efforts is reflective of the spectrum of possible threats that 
require consideration. It is clearly impossible to protect 
against all possible threats and an approach to 
prioritization is needed. A natural metric to use in the 
allocation of resources to this problem is risk.  However, 
having chosen risk as a suitable metric, a number of 
important issues remain to be resolved 
 
• What is a comprehensive set of threat scenarios for 

which risk is to be estimated? 
• What is the likelihood that a particular scenario will 

be attempted? 
• Given an attempt what is the likelihood that the 

attempt will be successful? 
• How are the diverse consequences associated with a 

scenario to be suitably aggregated? 
• How should a risk ranking of the scenarios be 

presented and what is the appropriate measure to 
express the confidence in the results? 

 
These and other related questions are similar to those 
confronted in other risk analyses and one could easily 
reach the conclusion that an adaptation of standard PSA 

techniques is called for. We argue here that a different 
approach is better suited to the largely qualitative 
knowledge that exists in the counter terrorism field. The 
nature of this argument is outlined by considering a 
specific problem – nuclear terror. 
 The methodology presented here to assess terrorist 
risk is called Logic Evolved Decision (LED) analysis.1, 2 
The fundamental idea upon which LED is based is the use 
of linked logic models to represent the necessary 
functions of a decision analysis tool. Each logic model is 
a directed graph called a process tree. 3,4 The process trees 
are developed deductively using general-purpose tree 
construction software called LED TREE. 5 Two process 
trees are essential for decision analysis: a possibility tree 
that represents a comprehensive set of alternatives, in this 
case terrorist attack scenarios and an inference tree that 
defines how a metric is to be inferred. Here the metric is 
risk and this measure will be used to rank order the 
scenarios obtained from the possibility tree. 
 
II. POSSIBILITY TREE FOR ATTACK SCENARIOS 
 
 Figure 1 shows the possibility tree for nuclear terror 
attacks constructed using LED TREE.a The intent in 
building this tree is to deduce a comprehensive set of 
                                                           
a We assume familiarity on the reader’s part with standard 
logic gates and the hierarchical structure of a deductive 
tree such as a fault tree. 
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Fig. 1. Possibility tree for attack scenarios. 
 
 
scenarios involving nuclear weapons, radionuclide 
sources and aerosols from reactors. The top node in the 
tree shown to the left of the figure is “A nuclear terror 
attack is perpetrated.” This node is an AND gate, with 
inputs “utilizing radionuclides” and “The attack is 
perpetrated by.” The former is the start of the 
development of how the attack is carried out and the latter 
begins the description of who carries out the attack. The 
tree here is meant to be illustrative only. Representative 
attackers are suggested by the three terminal nodes “a 
domestic terrorist group,” “a foreign terrorist group,” 
and “a disaffected individual.” In an actual application 
each of these would be developed in more detail. The 
logic gate for “The attack is perpetrated by” is a 
TAXONOMY gate; LED TREE makes available a suite of 
special purpose gates so that the analyst can express quite 
specific logical relationships. Note also that the input 
nodes to this gate are in two different colors. The terminal 
node “a foreign terrorist group” is green (light tone), 
indicating that it is an active part of the logic equation. 

The other two terminals are blue (dark tone). These nodes 
have been designated as “excluded.” Excluded status 
means that they are not currently part of the logic 
equation represented by the tree as shown; the only 
attacker group under consideration is “a foreign terrorist 
group.” 
 The node “utilizing radionuclides” is an OR gate. The 
first input to this gate “The attack involves detonating a 
nuclear explosive” appears as a solid green diamond. The 
diamond indicates that there is additional development 
that has been collapsed in this view. Collapsing a portion 
of the tree allows an analyst to concentrate on a particular 
section of the tree. The diamond here is solid, signifying 
that the collapsed sub tree has been “terminated.” That is, 
the current version of the logic equation does not take into 
account the inputs to this node. The other inputs to 
“utilizing radionuclides” examine the possibilities 
associated with 1) the dispersal of radionuclides that the 
attacker controls, 2) aerosols from reactors and other 
components of the nuclear fuel cycle and 3) direct 



irradiation. We examine the first of these in more detail 
here. Logically the dispersal of attacker-controlled 
material could occur in a confined or unconfined location. 
The node “Dispersal occurs in an unconfined location,” is 
represented as a CAUSALITY gate indicating a process 
sequence. The first input to this gate “The released 
material contaminates a region that includes” appears as 
a triangle indicating a collapsed replicant. A replicant is a 
sub tree that can be used multiple times. All replicants are 
edited in the replicant window that appears to the right in 
Fig. 1. The remaining inputs to the gate - also replicants, 
describe the rest of the sequence resulting in the dispersal.  
 Our tree is a logical equation written in natural 
language form. One class of solutions is the set of paths. 
Each path is a unique attack scenario. For example: 
 

A nuclear terror attack is perpetrated utilizing 
radionuclides. The attack involves dispersing 
attacker controlled radioactive material. Dispersal 
occurs in an unconfined location. The released 
material contaminates a region that includes a 
downtown area. The attack uses technical 
radioisotopes. The attacker gains possession of the 
material through theft from a source of stored 
material. by means of insider diversion. The attacker 
transports the material to the dispersal site: - using a 
road vehicle. - by placing the material in the 
transport vehicle. - carrying the material to the 
dispersal site. - gaining access to the dispersal site. 
The attacker performs the dispersal action: - by 
putting the material in dispersable form by choosing 
a release mechanisms that generates material in a 
dispersible form. - by providing a dispersal command 
signal by manual action of the attacker. - by 
providing dispersion energy through an explosion. - 
by providing a dispersion path. The attack is 
perpetrated by a foreign terrorist group. 

 
This scenario is unedited, that is it appears as shown from 
solving the logical equation. The relative ease in reading 
and understanding the scenarios demonstrates the value of 
using natural language in the possibility tree. 
 The number of paths and the degree of detail 
expressed in the individual paths is controlled by the use 
of the termination and exclusion commands. For the tree 
as shown in Fig. 1, there are six unique paths.b These are 
summarized in Table I. There are four attack scenarios 
involving radionuclide dispersal that differ according to 
target – an indoor sports arena, and an unspecified down-
town area, and according to the method used to acquire 
the material – theft and supply from a third party. The 
third entry in the table corresponds to the path listed 

                                                           
b When the entire tree of Fig. 1 is active, there are 
2,702,151 unique attack scenarios. 

above. The fifth entry in the table is an attack on a nuclear 
reactor: 
 

A nuclear terror attack is perpetrated utilizing 
radionuclides. The attack involves dispersing 
radioactive material from a nuclear reactor used for 
commercial power production: - by releasing 
radionculides from the reactor core by causing a core 
melt by causing a LOCA. The radioactive material is 
dispersed by natural dispersive phenomena. The 
released material contaminates a region that includes 
a downtown area. The attack is perpetrated by a 
foreign terrorist group. 

 
Finally the last entry is for an improvised nuclear device. 
The details for this attack appear in the solution when the 
termination of the node “The attack involves detonating a 
nuclear explosive ” is removed: 
 

A nuclear terror attack is perpetrated utilizing 
radionuclides. The attack involves detonating a 
nuclear explosive improvised by the attacker. The 
attack is perpetrated by a foreign terrorist group.   

 
We will consider this scenario in more detail in 
Section V. 
 
III. INFERENCE TREE FOR RISK 
 
 Given a set of terrorist attack scenarios we would like 
to rank order them according to risk. Our inferential 
model incorporates a game theoretic perspective. The 
game to be played is asymmetric. A specific attacker will 
choose to attempt only a particular subset of attack 
scenarios associated with particular targets and employing 
specific attack modes. He will attempt to allocate his 
assets in order to inflict the maximum amount of terror. 
The defender on the other hand must try to protect all of 
the targets for which he bears responsibility against all 
attack scenarios. He will attempt to minimize his risk. 
This is an example of an extensive game that will be 
played with imperfect knowledge by all players.6 We cast 
ourselves as the defender in this game and therefore wish 
to minimize attack risk. To achieve this we must take into 
account the counter-objective of the attackers. That is, in 
order to estimate risk, we must make an estimate of the 
optimum strategy for the attackers.   
 Figure 2 shows the proposed inferential model. The 
risk to the defender associated with a scenario is inferred 
from the aggregate consequence resulting from the attack 
and the likelihood that the attack is successful.  As with 
the possibility tree, we use natural language expressions 
in the deduction of the inferential structure. The objective 
here is to deduce the factors determining risk and how 
they logically combine. The terminal nodes in this model 
are the input variables that are needed to evaluate the risk.  



TABLE I. Summary of Attack Scenarios 
 

Scenario Target Radiation Source Acquisition Source 
S1 Confined Sports Arena Gamma Source Theft, insider diversion 
S2 Confined Sports Arena Gamma Source Third party 
S3 Downtown Area Gamma Source Theft, insider diversion 
S4 Downtown Area Gamma Source Third party 
S5 Downtown Area Fission Products Commercial Power Reactor 
S6 Downtown Area Improvised Nuclear Weapon Theft, insider diversion 
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Fig. 2. Inference tree for attack risk. 
 
 
Each AND gate in this tree is understood to represent an 
inferential step. We consider how this inference process is 
to be carried out in Section IV. 
 A simplified representation for the attacker’s decision 
process is shown as the Attacker Model in Fig. 2. The 
basic inferential model here is a cost/benefit analysis from 
the attacker’s perspective. Of course, the attacker’s actual 
decision model is inaccessible to us and we can only try 
here to approximate the analysis of a rational opponent. 
The attacker’s cost estimate depends upon the inherent 
difficulty of the attack as well as the risk of interdiction. 
Similarly in evaluating benefit, a rational attacker takes 
into account the perceived gain resulting from a 
successful attack and the likelihood that the attack is in 
fact successful. This latter node is inferred from the 
uninhibited success likelihood – the chances of success 
given no defense, and the attacker’s estimate that the 
defender can prevent the attack. The attacker must also 
assemble the appropriate agent group to perform the 

attack. In our simple model we picture some general pool 
of agents available to the attacker and shrink this pool 
depending upon the knowledge required to carry out the 
attack. The corresponding defender model here is a 
simple vulnerability estimate that depends again upon the 
uninhibited success likelihood and the likelihood that the 
attack can be prevented. The defender’s estimate of the 
chances of an attack succeeding in the absence of any 
preventive actions may well be different than what he 
believes to be the attackers estimate. The prevention 
likelihood will depend upon the preventive measures in 
place and their effectiveness, information that is directly 
available to the defender.  
 
IV. APPROXIMATE REASONING EVALUATION 

FOR RISK 
 
 The inferential model identifies the basic factors and 
their relationships. At this point a decision must be made 



as to how the risk metric is to be measured using these 
factors. One approach is to represent the inferential 
process as a series of linked numerical functions. This is a 
natural choice when much of the input data is quantitative 
and where the data relationships can be easily cast in 
functional form. Consideration of the problem at hand 
suggests that these conditions are not met. Much of the 
data is qualitative in nature and the nature of the 
attacker/defender extensive game is primarily one of 
perception. An analysis methodology that is well suited to 
this set of inferential specifications is approximate 
reasoning (AR).7,8 AR is intended to emulate the type of 
expert judgment used by subject matter experts. Variables 
in AR are linguistic – natural language expressions that 
can take on a set of discrete natural language values. Note 
that there is a one-to-one correspondence between the 
natural language used in the inference tree and these 
linguistic variables.  
 In AR, inferences with linguistic variables are made 
using formal logical implication defined in a series of 
linked, forward chaining rule bases. A detailed discussion 
of AR is beyond the scope of this paper and we offer here 
a short example to demonstrate the compatibility of AR 
with the type of expert-based inferential reasoning we 
wish to emulate. From Fig. 2 we conclude that risk, R can 
be inferred from the aggregate consequences Ca and the 
likelihood of a successful attack Ls, 
 
  (1) RLC sa ⇒∧
 
where is the implication operator. A linguistic variable 
takes on the values from its universe of discourse, the set 
of words used to describe it. Here we use R = {Very Low, 
Low, High, Very High}, C

⇒

a = {Negligible, Moderate, 
High, Catastrophic} and Ls = {Very Unlikely, Unlikely, 
Likely, Nearly Certain}.  The rule base that implements 
the logical implication is shown in Table II. The shaded 
entry in the rule base corresponds to the implication “If 
the Aggregate Consequences are High and the Attack 
Success Likelihood is Unlikely Then the Risk is Low”. 
Each linguistic variable associated with Fig. 2 requires a 
universe of discourse and there is a rule base associated 
with each AND gate in this inferential model. The 
universes of discourse and the rule bases are chosen to be 
consonant with the judgments of the subject matter 
experts for the problem, in this case, intelligence officers, 
physical protection analysts, etc.  
 To perform evaluations with this AR model we treat 
each element in a universe of discourse as a fuzzy set. 
The ability to express ambiguous or hedged expressions 
of a linguistic variable, for example “The aggregate 
consequences are moderate to high, but somewhat closer 
to moderate” is encoded using the degree of membership 
vector, µ(Ca) = [Negligible:0, Moderate:.8, High:.2, 
Catastrophic:0]. The concept of likelihood appears a 

number of times in the risk model. Likelihood is a natural 
language expression associated with outcome uncertainty. 
We interpret a degree of membership for Ls , say µ(Ls) = 
{Very Unlikely: .2, Unlikely:.4, Likely:.3, Nearly 
Certain:0] as an expression of the possibility that the 
likelihood is described by each of these descriptors. Note 
that the sum of these memberships is not 1.0. That is, our 
expression of outcome uncertainty is imprecise and non-
probabilistic. A natural language equivalent might be “the 
likelihood of a successful attack is in the range from very 
unlikely to likely”. Logical implication with fuzzy/ 
possibilistic inputs to a rule base is performed using the 
min-max operator.9,10 For the two vectors given here, the 
corresponding risk vector is, µ(R) = [Very Low:.2, 
Low:.4, High:.2, Nearly Certain:0], which can be 
expressed variously as “the risk is low,” “the risk is very 
low to high,” etc. The application of linguistic variables, 
implication rule bases and fuzzy sets in AR provides the 
set of capabilities needed to evaluate risk for the nuclear 
terror problem. 
 
V. ILLUSTRATIVE RESULTS 

 We examined the capabilities of the AR-based 
inference model by evaluating the six attack scenarios in 
Table I. This required providing degree of membership 
vectors for each of the terminal nodes in the inference 
model of Fig. 2. The values used were chosen to illustrate 
the characteristics of our game-based model and do not 
reflect actual intelligence or physical security data.  
Figure 3 shows the risk degree of membership vectors for 
the six scenarios. For each scenario the degree of 
membership in the risk fuzzy sets {Very Low, Low, High, 
Very High} are shown. Recall that S1 and S2 are attacks 
on an indoor sports arena that differ only by the 
acquisition mode. Scenarios S3 and S4 are the analogs for 
an attack on an outdoor downtown area. S5 is the scenario 
associated with a commercial power reactor and S6 is the 
improvised nuclear device; the target in these cases is a 
downtown area.  
 The distribution of the membership vectors arises 
from the assignments given to the input variables and 
evaluation of the chained implication rule bases. We 
may view these distributions as a representation of the 
ambiguity and outcome uncertainty associated with the 
scenario evaluations. It is often useful to present the 
results in terms of a centroid analogous to a mean or 
median in a probabilistic analysis.c These results are 
shown in Fig. 4. The numerical scale and the relative 
importance of the individual risk sets are chosen so that 
the results are consistent with the corresponding natural 

                                                           
c In an AR model this operation is referred to as 
defuzzification. 



TABLE II. Rule Base for Inferring Risk from Aggregate Consequences and Likelihood of a Successful Attack 
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Fig. 3. Degree of membership vectors for illustrative attack scenarios. 
  
 
language we use to describe risk. Figure 4 also shows a 
variation on the improvised nuclear device scenario. In 
S6* the scenario was modified so that the attacker is 
assumed to already have possession of the required 
special nuclear material in a location near the target. 
Although strictly notional here, the change in risk 
observed suggests the potential importance of nuclear 
safeguards in evaluating the risk of such attacks. 
 
VI. DISCUSSION OF ANALYSIS 

 The application of LED to the problem of nuclear 
terrorism provides useful insights into the nature of 

homeland security. A possibility tree proved to be an 
efficient way to deduce a comprehensive set of attack 
scenarios. Although there are potentially an enormous 
number of unique scenarios, the use of termination and 
exclusion command options make it practical to select a 
subset of scenarios that is appropriate for detailed 
analysis. The natural language capability of LED TREE 
allows the attack scenarios to be expressed in a form that 
is accessible to the experts as well as decision makers. 
The details of a scenario can be developed in as much 
detail as desired. This allows for better identification, 
design and assessment of preventive and interdiction 
measures. 
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Fig. 4. Centroid risk values for illustrative problem. 
  
 
The design of the inferential model presented here reflects 
our view that a game theoretic perspective is needed to 
make useful risk estimates. That is, it is insufficient to 
concentrate on the vulnerability of homeland targets to 
the exclusion of attacker motivation, intentions and 
capability. Efficient allocation of resources will not be 
possible unless realistic risk estimates are available. We 
believe that advanced game-based models that emulate 
attacker behavior will be important in achieving this goal. 
In our study we used an AR-based implementation to 
infer risk. AR works well with qualitative, perceptual data 
that is imprecise and ambiguous. Further, much of the 
inferential process attempts to reflect the intentions of 
players – terrorist groups, who are making their own 
sequence of expert judgments. It is relatively 
straightforward to represent judgments of this sort as a 
set of forward-chaining rule bases.   
 Other approaches such as Probabilistic Risk Analysis 
(PRA) have been suggested for estimating nuclear terror 
risk. LED software could be used to build the set of attack 
scenarios and to design an inferential model for a 
traditional PRA approach as well. We have discussed the 
relative merits of AR versus Bayesian approaches for 
complex, predominantly perception-based problems 
elsewhere.11 AR is often “good enough” in the sense that 
an approximate rank ordering or triage of the alternatives 
is sufficient. For such problems high precision is neither 
practical nor useful. An AR approach meshes well with 

the types of intelligence information and analytical 
techniques that will play a prominent role in homeland 
security. Natural language methods such as AR are also 
compatible with data mining and other knowledge 
discovery techniques that are the prerequisites to a future 
capability to produce real time estimates of risk.  
 The results of our initial study are encouraging. 
An analysis of risk and asset allocation for a particular 
homeland security related problem is currently underway. 
Work on extending the capabilities of LED software to 
allow for more efficient model construction and 
evaluation is also underway. Finally we continue to 
pursue the objective of designing more realistic game-
based inference models to improve risk estimation. 
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